翻訳と辞書
Words near each other
・ Brilliant, Ohio
・ Brilliant.org
・ Brilliantine
・ Brilliantine (fabric)
・ Brillianty
・ Brillion
・ Brillion (town), Wisconsin
・ Brillion High School
・ Brillion Iron Works
・ Brillion, Wisconsin
・ Brillo Pad
・ Brillon
・ Brillon-en-Barrois
・ Brillosa
・ Brillouin
Brillouin and Langevin functions
・ Brillouin scattering
・ Brillouin Spectroscopy
・ Brillouin zone
・ Brillouin's theorem
・ Brillstein Entertainment Partners
・ Brill–Noether theory
・ Brill–Zinsser disease
・ Brilon
・ Brilon Massenkalk Formation
・ Brilon Shale
・ Brilon Stadt station
・ Brilon-Wald station
・ Brilyov Sergey Vladimirovich
・ Brim


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Brillouin and Langevin functions : ウィキペディア英語版
Brillouin and Langevin functions
The Brillouin and Langevin functions are a pair of special functions that appear when studying an idealized paramagnetic material in statistical mechanics.
==Brillouin function ==

The Brillouin function〔C. Kittel, ''Introduction to Solid State Physics'' (8th ed.), pages 303-4 ISBN 978-0-471-41526-8〕 is a special function defined by the following equation:

:B_J(x) = \frac \coth \left ( \frac x \right )
- \frac \coth \left ( \frac x \right )

The function is usually applied (see below) in the context where ''x'' is a real variable and ''J'' is a positive integer or half-integer. In this case, the function varies from -1 to 1, approaching +1 as x \to +\infty and -1 as x \to -\infty.
The function is best known for arising in the calculation of the magnetization of an ideal paramagnet. In particular, it describes the dependency of the magnetization M on the applied magnetic field B and the total angular momentum quantum number J of the microscopic magnetic moments of the material. The magnetization is given by:〔
:M = N g \mu_B J \cdot B_J(x)
where
*N is the number of atoms per unit volume,
*g the g-factor,
*\mu_B the Bohr magneton,
*x is the ratio of the Zeeman energy of the magnetic moment in the external field to the thermal energy k_B T:
::x = \frac
*k_B is the Boltzmann constant and T the temperature.
Note that in the SI system of units B given in Tesla stands for the magnetic field, B=\mu_0 H, where H is the auxiliary magnetic field given in A/m and \mu_0 is the permeability of vacuum.
:/Z
where ''Z'' (the partition function) is a normalization constant such that the probabilities sum to unity. Calculating ''Z'', the result is:
:P(m) = e^/\left(\sum_^J e^\right).
All told, the expectation value of the azimuthal quantum number ''m'' is
:\langle m \rangle = (-J)\times P(-J) + \cdots + J\times P(J) = \left(\sum_^J m e^\right)/ \left(\sum_^J e^\right).
The denominator is a geometric series and the numerator is a type of (arithmetic-geometric series ), so the series can be explicitly summed. After some algebra, the result turns out to be
:\langle m \rangle = J B_J(x)
With ''N'' magnetic moments per unit volume, the magnetization density is
:M = Ng\mu_B\langle m \rangle = NgJ\mu_B B_J(x).
|}

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Brillouin and Langevin functions」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.